Model Paper Class 11th, 2018

Mathematics

Time: 3 Hours

Max. Marks: 100

General Instructions:

- a) All questions are compulsory
- b) The questions paper contains 29 questions
- c) Question 1-4 in section A are very short answer type questions carrying 1 marks each
- d) Questions 5-12 in section B are short answer type questions carrying 2 marks each
- e) Questions 13-23 in section C are long answer type questions carrying 4 marks each
- f) Questions 24-29 in section D are long answer type questions carrying 6 marks each.
- g) There is no overall choice. However an internal choice is given in three questions of section C and three questions of section D. Do only one out of them.

Section (A)

Questions from 1-4 are of 1 mark each

Q. No. 1.If Set A has 'm' elements and set B has 'n' elements, then the number of relations from set A to set B are;

 $(a)2^{m}$

(b) mn

(c) m + n

(d) 2^{mn}

Q.No.2. Which one of the following functions is invertible?

- a) One-One Into functions
- (b) Many One onto functions
- c) Many-one into functions (d) One-One onto functions

Q.No.3. The value of $\lim_{n\to 0} \frac{\sin x}{x}$ (Where 'x' is in radians) is =

Q.No.4. The value of;
$$\lim_{n\to\infty} \frac{x^n - a^n}{x - a} = na^{n-1}$$

(True/False)

Section (B)

Question from 5 to 12 are of 2 marks each

- Q.No.5. Write down the all subsets of $A = \{a, b\}$
- Q.No.6. Find the degree measure of $\frac{5\pi}{3}$ radians
- Q.No.7. Find the value of; $i^2 + (-i)^4 i^6$
- Q.No.8. Evaluate the limit; $\lim_{x\to 0} \frac{\sin ax + bx}{ax + \sin bx}$, a, b, $a+b\neq 0$
- Q.No.9. Find $\frac{dy}{dx}$ when $y = 4x^3 + cosx tanx$
- Q.No.10. If $P(A) = \frac{1}{4}$ then what is $p(not \ A)$?
- Q.No.11. Find the coefficient of x^3 in the expansion of $(1 + \frac{4}{3}x)^7$
- Q.No.12. Find first five terms of sequence $a_n = n(\frac{n^2+5}{4})$

Section (C)

Question from 13 to 23 are of 4 marks each

- Q.No.13. If $U = \{1,2,3,4,5,6,7,8,9\}$, $A = \{2,4,6,8\}$ and $B = \{2,3,5,7\}$. Verify that;
 - $(I) (A \cup B)' = A' \cap B'$
 - $(II) (A \cap B)' = A' \cup B'$
- Q.No.14. Determine the domain and range of the relation R defined by:

$$R = \{(x, x + 5): x \in \{1, 2, 3, 4, 5\}\}$$

- Q.No.15. Prove that: $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$ by using principle of Mathematical induction.
- Q.No.16. Prove that: $\frac{\sin 5x + \sin 3x}{\cos 5x \cos 3x} = \tan 4x$
- Q.No.17. Convert the given complex number into the polar form;

$$Z = \sqrt{3} + i$$

Q.No.18. Find the derivative of; $\frac{\sin x + \cos x}{\sin x - \cos x}$

Evaluate the limit;

$$\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}$$

Q.No.19. Find the equation of circle passing through the points (2,3) and whose centre is (0, -2)

Q.No.20. 15. If E and F are the events such that $P(E) = \frac{1}{4}$; $P(F) = \frac{1}{2}$ and

 $p(E \text{ and } F) = \frac{1}{8}. \text{ Find;}$

(I) P(E or F)

(II) P(Not E and Not F)

Or

If A and B are the events such that P(A) = 0.42, P(B) 0.48 and

P(A and B) = 0.16. Determine;

(I) P(not A)

(II) P(A or B)

Q.No.21. Find the middle term in the expansion of;

 $(3-\frac{x^3}{6})^7$

Or

Show that $9^{n+1} + 8n - 9$ is divisible by 64, whenever 'n' is positive integer.

- Q.No.22. Find the ratio in which YZ plane divides the line segment formed by the joining the points (-2, 4, 7) and (3, -5, 8)
- Q.No.23. (I) Write the negation of the statement; Srinagar is a city
 - (II) Write the converse of the statement; If 'n' is even, then 'n2' is even

Section (D)

Question from 24 to 29 are of 6 marks each

Q.No.24. Prove that; $Cos^2x + Cos^2\left(x + \frac{\pi}{3}\right) + Cos^2\left(x - \frac{\pi}{3}\right) = \frac{3}{2}$

Or

Find the general solution and the principle solution of:

$$\cos 3x + \cos x - \cos 2x = 0$$

Q.No.25. Q.No.4. Find 'n' if;

(I)
$$(n-1)_{P_3}$$
: $n_{P_4} = 1:9$

(II)
$$2n_{c_3} : n_{c_3} = 12:1$$

Or

In how many of the distinct permutations of the letters in MISSISSIPPI do the four I's not come together.

- Q.No.26. If p and q are the lengths of perpendiculars from the origin to the line $x\cos \emptyset y\sin \emptyset = k\cos 2\emptyset$ and $x\sec \emptyset + y\csc \emptyset = k$ respectively. Prove that $p^2 + 4q^2 = k^2$
- Q.No.27. Find the coordinates of the foci, the vertices, the length of major and minor axes, the eccentricity and the length of the Latus Rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$
- Q.No.28. Calculate the mean, variance and the standard deviation for the following distribution;

Class:

30-40

40-50

50-60

60-70

70-80

80-90 90-100

Frequency: 3

7

12

15

8

3

Q.No.29. Sum of first p, q and r terms of an A.P are a, b and c respectively. Prove that; $\frac{a}{q}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$

Or

Find the sum of the sequence 7, 77, 777, ... to n terms.