Model Paper Class $11^{\text {th }}$ Class: $11^{\text {th }}$

Exam: Hr. Sec. Part I
Subject: Business Mathematics

Max Marks: 100

Time: 3 Hours

Section (A) Long Answer Type Questions ($5 Q \times 6 M=30$ Marks)
Q.No.1. The sum of first three terms of a GP is $\frac{39}{10}$ and their product is 1 . Fid the common ratio and the terms.

Or
If $p^{\text {th }}$ and $q^{\text {th }}$ terms of an AP are $\frac{1}{q}$ and $\frac{1}{p}$ respectively. Show that the sum of first $p q$ terms is $\frac{p q=1}{2}$
Q.No.2. Find the value of other five trigonometric, given $\cos x=\frac{-1}{2} ; x$ lies in $3^{\text {rd }}$ quadrant.

Or
Prove the following;

$$
\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=\frac{-\sin 2 x}{\cos 10 x}
$$

Q.No.3. Find the middle term(s) I the expansion of $\left\{3-\frac{x^{3}}{6}\right\}^{7}$
or
Find the coefficients of $a^{5} b^{7}$ in the expansion of $(a-2 b)^{12}$
Q.No.4. Find the mean deviation about the median of the data;

36	72	46	42	60	45	53	46	51	49

Or
Find the variance of the first ' n ' natural numbers.
Q.No.5. Find Q.D. (Quartile Deviation) from the following data;

x_{i}	2	5	6	8	10	12
f_{i}	2	8	10	7	8	5

Or
Find the S.D (Standard Deviation) from the following data;

x_{i}	6	10	14	18	24	28	30

$\begin{array}{llllllll}f_{i} & 2 & 4 & 7 & 12 & 8 & 4 & 3\end{array}$
Section (B) Short Answer Type Questions (10Q $\times 4 \mathrm{M}=40 \mathrm{Marks}$)
Q.No.6. If $n(X)=17, n(Y)=23$ and $n(X \cup Y)=38$. Find $n(X \cap Y)$. Where X and Y are two sets.
Q.No.7. If $G=\{7,8\}, H=\{5,4,2\}$ Find; $G \times H$ and $H \times G$
Q.No.8. Insert three numbers between 1 and 256 so that the resulting sequence is a G.P.
Q.No.9. Prove that $\frac{\sin (x+y)}{\sin (x-y)}=\frac{\tan x+\tan y}{\tan x-\tan y}$
Q.No.10. If $\frac{1}{6!}+\frac{1}{7!}=\frac{x}{8!}$. Find the value of ' x '
Q.No.11. Simplify;
(I) $\frac{9!}{4!3!2!}$
(II) $5_{P_{4}}$
Q.No.12. Find $(a+b)^{4}-(a-b)^{4}$.
Q.No.13. A coin is tossed two times. Find the probability of;
(I) At least two heads
(II) Exactly two heads
Q.No.14. Solve the following inequalities;
(I) $4 x+3<5 x+7$
(II) $\frac{x}{3}>\frac{x}{2}+1$
Q.No.15. Solve the following system of inequalities graphically.
(I) $2 x+y>6$
(II) $3 x+4 y \leq 12$
section (c) Very Short Answer Type Questions (10Q $\times 2 \mathrm{M}=20 \mathrm{Marks}$)
Q.No.16. Let $A=\{a, b\}, B=\{a, b, c\}$. Is $A \subset B$? What is $A \cup B$?
Q.No.17. If $(x+1, y-2)=(3,1)$. Find ' x ' and ' y '
Q.No.18. Find first three terms of a GP whose $a_{n}=2^{n+1}$
Q.No.19. Find first five terms of sequence $a_{n}=n\left(\frac{n^{2}+5}{4}\right)$
Q.No.20. Find the principle value of ' x ' for which $\cos 2 x=0$
Q.No.21. Define median.
Q.No.22. Write sample space for the random experiment of tossing a coin twice.
Q.No.23. If $\frac{2}{11}$ is the probability of an event. What is the $p(\operatorname{Not} A)$
Q.No.24. If $P(A)=0.6, p(B)=0.4 . P(A \cap B)=0.2$. Find $P(A \cup B)$
Q.No.25. Solve the inequality for ' x '
$3 x-6 \geq 9$
section (c) Very Short Answer Type Questions (10Q×1M=10Marks)
Q. No. 26. Do as directed.
(I) Two sets are said to be disjoint if;
(a) $A \cup B=\varnothing$
(b) $A \cup B=A$
(c) $A \cap B=\emptyset$
(d) $A \cap B=A$
(II) The $\mathrm{n}^{\text {th }}$ term of the G.P. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ is \qquad
(III) If $\sin x=\frac{-1}{2}$, then ' x ' lies \qquad Quadrant.
(IV) The value of $n_{p_{n}}$ is equal to;
(a) 1
(b) 2
(c) n
(d) 0
(V) The mean of $1,2,3,4,5$ is \qquad
(VI) Which of the following is true?
(a) $A M \geq G M$
(b) $A M>G M$
(c) $A M<G M$
(d) $A M \leq G M$
(VII) The probability of an event is greater than 1.
(VIII) The probability of an event E satisfies; $0 \leq P(E) \leq 1$
(IX) For the events A and $B, P(A \cap B)=P(A)+P(B)-P(A \cup B)$
(X) If S is the sample space, then $P(S)$ is;
(a) n
(b) 2
(c) 0
(d) 1

